Multiplicities, invariant subspaces and an additive formula

نویسندگان

چکیده

Abstract Let $T = (T_1, \ldots , T_n)$ be a commuting tuple of bounded linear operators on Hilbert space $\mathcal{H}$ . The multiplicity $T$ is the cardinality minimal generating set with respect to In this paper, we establish an additive formula for multiplicities class tuples operators. A special case main result states following: $n \geq 2$ and let $\mathcal{Q}_i$ $i 1, n$ proper closed shift co-invariant subspaces Dirichlet or Hardy over unit disc in $\mathbb {C}$ If $\mathcal{Q}_i^{\bot }$ zero-based invariant subspace, then joint $M_{\textbf {z}} (M_{z_1}, M_{z_n})$ -invariant subspace $(\mathcal{Q}_1 \otimes \cdots \mathcal{Q}_n)^{\perp polydisc {C}^{n}$ given by \[ \mbox{mult}_{M_{\textbf{{z}}}|_{ (\mathcal{Q}_1 \mathcal{Q}_n)^{{\perp}}}} \mathcal{Q}_n)^{{\perp}} \sum_{i=1}^{n} (\mbox{mult}_{M_z|_{\mathcal{Q}_i^{{\perp}}}} (\mathcal{Q}_i^{\bot})) n. \] similar holds Bergman polydisc.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Subspaces, Quasi-invariant Subspaces, and Hankel Operators

In this paper, using the theory of Hilbert modules we study invariant subspaces of the Bergman spaces on bounded symmetric domains and quasi-invariant sub-spaces of the Segal–Bargmann spaces. We completely characterize small Hankel operators with finite rank on these spaces.

متن کامل

An Alternating Sum Formula for Multiplicities of Lower Defect Groups

Let G be a finite group and let k be an algebraically closed field of prime characteristic p. Let 5 b e a block of kG, P a /^-subgroup of G and n a /(-element of G. Then the multiplicity of P as a lower defect group of B for the /^-section of n is defined [1, 2, 4] and is denoted by mB(P). We shall prove the following induction theorem for mB(P) in terms of the Brown complex A of chains of non-...

متن کامل

Invariant subspaces in Simpira

In this short note we report on invariant subspaces in Simpira in the case of four registers. In particular, we show that the whole input space (respectively output space) can be partitioned into invariant cosets of dimension 56 over F 28 . These invariant subspaces are found by exploiting the non-invariant subspace properties of AES together with the particular choice of Feistel configuration....

متن کامل

Linear Algebra: Invariant Subspaces

Introduction 1 1. Invariant Subspaces 3 2. Eigenvectors, Eigenvalues and Eigenspaces 11 3. Cyclic Spaces 14 4. Prime and Primary Vectors 15 5. The Cyclic Decomposition Theorem 20 6. Rational and Jordan Canonical Forms 22 7. Similarity 23 8. The Cayley-Hamilton Polynomial (Or: Up With Determinants?) 24 9. Extending The Ground Field 25 9.1. Some Invariances Under Base Extension 25 9.2. Semisimpli...

متن کامل

Perturbation of invariant subspaces ∗

We consider two different theoretical approaches for the problem of the perturbation of invariant subspaces. The first approach belongs to the standard theory. In that approach the bounds for the norm of the perturbation of the projector are proportional to the norm of perturbation matrix, and inversely proportional to the distance between the corresponding eigenvalues and the rest of the spect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 2021

ISSN: ['1464-3839', '0013-0915']

DOI: https://doi.org/10.1017/s0013091521000146